Learning Adaptive Parameter Tuning for Image Processing
نویسندگان
چکیده
The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between these features and the optimal filtering parameters. Learning is performed by optimizing a user defined cost function (any image quality metric) on a training set. We apply our method to three classical problems (denoising, demosaicing and deblurring) and we show the effectiveness of the learned parameter modulation strategies. We also show that these strategies are consistent with theoretical results from the literature.
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملTuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm
Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...
متن کاملMachine learning for adaptive bilateral filtering
We describe a supervised learning procedure for estimating the relation between a set of local image features and the local optimal parameters of an adaptive bilateral filter. A set of two entropy-based features is used to represent the properties of the image at a local scale. Experimental results show that our entropy-based adaptive bilateral filter outperforms other extensions of the bilater...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.09414 شماره
صفحات -
تاریخ انتشار 2016